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Introduction

Traditionally, machine learning methodologies primarily focused on
data of the forms of:

Fixed dimensional vectors: images, etc.
Ordered sequences: texts, etc.

224

224 Bird

What happens if inputs are sets, where the data is

Unordered collection of objects
Number of objects can vary
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Introduction

Examples:
Supervised learning:

Classification

Table

Regression
Cluster Mass

Figure: Point cloud classification 1 and red-shift estimation of galaxy clusters2.

Unsupervised learning:
Set expansion: e.g.,
{lion, tiger , leopard} ⇒ {lion, tiger , leopard , cheetah, jaguar}
Anomaly detection
...

.
1David Griffiths, Point Cloud Classification with PointNet.
2Massimo Meneghetti, Weighing Simulated Galaxy Clusters Using Lensing and

X-Ray, Astronomy and Astrophysics.
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Problem Definition

Permutation Invariance

A function f : 2X → Y acting on sets is permutation invariant if the
output does not change under any permutation of the input set. For any
permutation π:

f ({x1, . . . , xM}) = f ({xπ(1), . . . , xπ(M)})

Permutation Equivariance

A function f : XM → YM is permutation equivariant if upon permuting
the input instances, the output labels are permuted in the same way. For
any permutation π:

f ([xπ(1), . . . , xπ(M)]) = [fπ(1)(x), . . . , fπ(M)(x)]
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Theorem 2: Permutation Invariance

Theorem 2.

A function f (X ) operating on a set X having elements from a countable
universe, is a valid set function, i.e., invariant to the permutation of
instances in X , iff it can be decomposed in the form

ρ

(∑
x∈X

ϕ(x)

)
,

for suitable transformations ϕ and ρ.

Remarks:

The Universal Approximation Theorem ensures that neural networks
can closely approximate any continuous function and thus, the
problem reduces to approximating ϕ and ρ functions.

The model handles variable-length inputs, as set size is influencing
only through

∑
x∈X ϕ(x).
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Proof of Theorem 2: Countable Case

Sufficiency (⇐):

For ρ
(∑

x∈X ϕ(x)
)
, changing the order of summation does not affect

the result, confirming invariance to permutation of elements of the
input set X ⊆ X.

Necessity (⇒):

Given countable X, there exists a bijective mapping c : X → N.
By defining ϕ(x) = 4−c(x), we ensure that

∑
x∈X ϕ(x) assigns a

unique representation to each subset X ⊆ X.

Construct ρ such that f (X ) = ρ
(∑

x∈X ϕ(x)
)
, encapsulating the set

function f .
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Extension to The Uncountable Case

The extension to when X is uncountable, e.g., X = R, is not so trivial.

Only proved for the case of fixed set size, e.g., X = RM , instead of
X = 2X = 2R.

Without loss of generality, assume X = [0, 1] and thus, X = [0, 1]M .

To handle ambiguity due to permutation, we often define the domain
to be X = {(x1, . . . , xM) ∈ [0, 1]M : x1 ≤ x2 ≤ . . . ≤ xM}.

Theorem 7.

f : [0, 1]M → R is a permutation invariant continuous function iff it has
the representation

f (x1, . . . , xM) = ρ

(
M∑

m=1

ϕ(xm)

)

for some independent and continuous outer and inner functions
ρ : RM+1 → R and ϕ : R → RM+1 respectively.
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Theorem 7 - Proof

Sketch of the Proof. Sufficiency is straightforward. To prove necessity,

We establish unique embeddings E for each X ∈ [0, 1]M defined as

E (X ) =
(∑M

m=1 ϕ(xm)
)
, where ϕ : R → RM+1 is

ϕ(x) = [1, x , x2, . . . , xM ].

Let Z be the image of [0, 1]M under E , and thus compact.
We claim that E : X → Z is a homeomorphism, where
X = {(x1, . . . , xM) ∈ [0, 1]M : x1 ≤ x2 ≤ . . . ≤ xM}
We exhibit a continuous map ρ : Z → R that recovers f from E (X )
via ρ(z) = f (E−1(z)). (since f and E−1 are both continuous)

We conclude that ∀X ∈ X , f (X ) = ρ(E (X )) = ρ
(∑M

m=1 ϕ(xm)
)
,

where ρ and ϕ are independent and continuous.

Figure:
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Proof of the Claim: Lemma 4.

Lemma 4.

Let X = {(x1, . . . , xM) ∈ [0, 1]M : x1 ≤ x2 ≤ . . . ≤ xM}. The
sum-of-power mapping E : X → RM+1 defined by the following coordinate
functions is injective.

Zq = Eq(X ) :=
M∑

m=1

(xm)
q, q = 0, . . . ,M.

Proof. Let u, v ∈ X , and assume E (u) = E (v). Define polynomials:

Pu(x) =
M∏

m=1

(x − um), Pv (x) =
M∏

m=1

(x − vm).

Expanding these polynomials gives us:

Pu(x) = xM − a1x
M−1 + · · ·+ (−1)MaM ,

Pv (x) = xM − b1x
M−1 + · · ·+ (−1)MbM ,
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Proof of the Claim: Lemma 4.

By Newton-Girard formulae, these coefficients relate to sums of powers:

am =
1

m

∑
1≤j1<···<jm≤M

uj1 · · · ujm , bm =
1

m

∑
1≤j1<···<jm≤M

vj1 · · · vjm .

Coefficients am and bm can be expressed using determinants involving
E (u) and E (v):

am =
1

m
det


E1(u) 1 0 · · · 0
E2(u) E1(u) 1 · · · 0

...
...

...
. . .

...
Em(u) Em−1(u) Em−2(u) · · · 1

 ,

bm =
1

m
det


E1(v) 1 0 · · · 0
E2(v) E1(v) 1 · · · 0

...
...

...
. . .

...
Em(v) Em−1(v) Em−2(v) · · · 1

 .

Since E (u) = E (v), it follows that Pu(x) = Pv (x), and hence u = v .
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Proof of the Claim: Theorem 5

Theorem 5. 1

The function f : CM → M, which associates every a ∈ CM to the multiset
of roots, f (a) ∈ M, of the monic polynomial formed using a as the
coefficient i.e., xM + a1x

M−1 + . . .+ (−1)M−1aM−1x + (−1)MaM , is a
homeomorphism.

Remark: This implies that (complex) roots of a polynomial depend
continuously on the coefficients.

1Branko Ćurgus, Vania Mascioni, , Roots and polynomials as Homeomorphic spaces,
Expositiones Mathematicae.
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Proof of The Claim: Lemma 6.

Lemma 6

Let X = {(x1, . . . , xM) ∈ [0, 1]M : x1 ≤ x2 ≤ . . . ≤ xM}. We define the
sum-of-power mapping E : X → Z by the coordinate functions

Zq := Eq(X ) :=
M∑

m=1

(xm)
q, q = 0, . . . ,M,

where Z is the range of the function. The function E has a continuous
inverse mapping.

Proof

As in Lemma 4, pick a u ∈ X and construct the polynomial
Pu(x) =

∏M
m=1(x − um), where u is its root.

Expanding Pu(x) gives x
M − a1x

M−1 + . . .+ (−1)MaM , where am are
the coefficients of the polynomial.
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Proof of the Claim: Lemma 6.

The coefficients am are expressible uniquely as functions of z = E (u)
using the Newton-Girard formula, as

am =
1

m
det



z1 1 0 · · · 0
z2 z1 1 · · · 0
z3 z2 z1 · · · 0
...

...
...

. . .
...

zm−1 zm−2 zm−3 · · · 1
zm zm−1 zm−2 · · · z1


Coefficients am are given by determinants, which are continuous
functions of z .

By Theorem 5, the roots u of Pu(x) depend continuously on
coefficients, and thus on z .

Since the determinants are polynomials in z , and polynomials are
continuous, u (as roots) are continuous in z .

u = E−1(z) is continuous in z , and thus, E−1 is continuous.
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Structure of Permutation Invariant Networks

Each instance xm, is transformed into a representation ϕ(xm).

These representations are summed:
∑

m ϕ(xm), and processed with a
deep neural network ρ.

Optionally, with additional meta-information z , ϕ can be conditioned
on z to produce ϕ(xm|z), allowing for context-specific representations.
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Lemma 3: Permutation Equivariance

Lemma 3.

The function fΘ : RM → RM defined as fΘ(x) = σ(Θx) where Θ ∈ RM×M ,
is permutation equivariant iff all the off-diagonal elements of Θ are tied
together and all the diagonal elements are equal as well. That is,

Θ = λI + γ(11T ), where λ, γ ∈ R, 1 = [1, . . . , 1]T ∈ RM ,

and I ∈ RM×M is the identity matrix.

Sketch of the Proof:

For each network layer,

fΘ(πx) = πfΘ(x) =⇒ σ(Θπx) = πσ(Θx) = σ(πΘx)

Thus, it is sufficient to derive conditions so that

Θπ = πΘ

for all permutation matrices π.
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Structure of Permutation Equivariant Networks

Remarks:

Note that Θx = λx + γ(1T x)1 where the first term is permutation
equivariant and the second term is permutation invariant.

In practice, sometimes f (x) = σ(λIx + γmaxpool(x)1) works better.
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Applications and Results

Sum of Digits
Find sum of a given set of

digits, or
images of handwritten digits

Train on sets of size 10 at most, while at test time we use examples
of length up to 100
DeepSets generalize much better than LSTM or GRU

Figure: Accuracy of digit summation with text (left) and image (right) inputs. All
approaches are trained on tasks of length 10 at most, tested on examples of
length up to 100. We see that DeepSets generalizes better.
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Applications and Results

Point Cloud Classification

A point-cloud is a set of 3D coordinates of an underlying sampled
surface.

Note the point cloud will be permutation invariant.

Application in face regognition of cameras, autonomous vehicles,
gesture estimation devices (Xbox Kinect, etc.)
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Applications and Results

Point Cloud Classification

Benchmarking DeepSets on ModelNet40 which containts > 10000 3D
objects belonging to 40 classes by trating point clouds as set of points.
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Applications and Results

Other Applications

Improved red-shift estimation for predicting the mass of galaxy
clusters from photometric data

Set anomaly detection and set expansion, image tagging, ...

Where we used the idea

Estimating performance metrics of a WIFI mesh network with
multiple clients, fixed number of routers and the internet gateway.

c

c

c
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Assessment: Strengths and Areas for Improvement

Strengths

Introduced a method for integrating system knowledge (i.e.,,
permutation invariance or equivariance properties) into the learning
process, which can be applied in various real world systems.

Demonstrated broad applicability in various areas with minimal
modifications and showed competitive performance in all of them.

Established solid theoretical proofs combined with a variety of
applications in different areas.

Areas for Improvement

Expansion of theoretical proofs to cover variable input sizes in the
uncountable case.

Thank You for your attention!
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