UNIVERSITY OF URBANA-CHAMPAIGN

Overview

Constrained resource allocation problems in logistics, cloud computing, and UAV scheduling can often be modeled as variants of the Facility Location Problem (FLP), which is NP-hard even without constraints due to its combinatorial and non-convex nature. In this abstraction:

- Facility positions encode resource attributes (e.g., server capacity, charging location),
- **Demand point positions** reflect task requirements (e.g., compute load, energy demand).

We extend the **Deterministic Annealing (DA)** framework, based on the **Maximum** Entropy Principle (MEP), to incorporate capacity constraints, resulting in a nonlinear program with inequality constraints at each annealing step. To efficiently enforce feasibility and ensure convergence, we recast this problem as a control system:

- Introduce control-affine dynamics over decision variables,
- Use a control Lyapunov-like function and Control Barrier Functions (CBFs) for stability and constraint satisfaction,
- Solve a constrained quadratic program (QP) at each step.

Our method achieves up to 240x speedup over classical solvers (e.g., SLSQP) with stronger constraint handling and scalability to dynamic settings.

Constrained Facility Location Proble

$$\min_{\substack{y_j \in \mathbb{R}^d, \ v_{j|i} \in \{0,1\}}} \mathcal{D} := \sum_{i=1}^N p_i \sum_{j=1}^M v_{j|i} d(x_i, y_j)$$

s.t.
$$\sum_{j=1}^M v_{j|i} = 1 \quad \forall i = 1, \dots, N$$
$$L_j \leq \sum_{i=1}^N p_i v_{j|i} c_{ij} \leq C_j \quad \forall j = 1, \dots$$

Definitions: $v_{i|i} \in \{0,1\}$: assignment of demand *i* to facility *j*; $y_i, x_i \in \mathbb{R}^d$: facility and demand locations; $p_i > 0$: demand weights with $\sum_i p_i = 1$; $d(x_i, y_i)$: assignment cost (e.g., squared distance); c_{ij} : resource usage of demand *i* at facility *j*; L_j, C_j : lower and upper capacity bounds.

MEP-based Formulation for FLP

• Unconstrained DA for FLP [1] – $P_{unconstr}(\beta)$

We relax binary assignments $\{v_{i|i}\}$ to invoke MEP, following the **Deterministic Annealing (DA)** approach introduced in [1] formulation introduces soft assignment probabilities $p_{i|i}^{p} \in [0, 1]$ and minimizes the β -parameterized free energy:

$$\min_{\substack{y_{j}^{\beta} \in \mathbb{R}^{d}, \ p_{j|i}^{\beta} \in [0,1]}} \mathscr{F}^{\beta} := \sum_{i=1}^{N} p_{i} \sum_{j=1}^{M} p_{j|i}^{\beta} d(x_{i}, y_{j}^{\beta}) + \frac{1}{\beta} \sum_{i=1}^{N} p_{i} \sum_{j=1}^{M} p_{j|i}^{\beta} \log p_{j|i}^{\beta}$$
(2a)
s.t.
$$\sum_{j=1}^{M} p_{j|i}^{\beta} = 1, \quad \forall i = 1, \dots, N$$
(2b)

A Control Barrier Function Approach to Constrained Resource Allocation Problems

Dhananjay Tiwari ^{†, 1} Alisina Bayati^{†, 1} Srinivasa Salapaka¹

[†]Authors contributed equally

¹University of Illinois, Urbana-Champaign

.em	
	(1a)
	(1b)
.,M	(1c)

Solution (fixed-point update):

These updates are iterated at increasing values of β , starting from a low-entropy initialization (e.g., uniform assignments), gradually converging to localized, nearbinary assignments as $\beta \rightarrow \infty$.

• Constrained DA for FLP – $P_{constr}(\beta)$ Same as (2), with the addition of capacity constraints:

$$L_j \le \sum_{i=1}^N p_i \, p_{j|i}^\beta \, c_{ij} \le C$$

Control-Based Optimization Framework

Theorem. Consider the relaxed constrained problem $P_{constr}(\beta)$, with cost shifted to ensure non-negativity as $\tilde{\mathscr{F}}^{\beta} := \mathscr{F}^{\beta} + \frac{\log M}{2}$. Define control-affine dynamics: $\dot{y}_j = u_j,$

$$\dot{p}_{j|i} = v_{ij},$$

initialized with a feasible $p_{i|i}(0) \in (0, 1)$ and at least one resource strictly within its capacity bounds. Let (v_{ij}, u_j, δ) solve the quadratic program:

$$\min \sum_{i,j} v_{ij}^2 + \sum_j ||u_j||^2 + q\delta^2$$

s.t. $\dot{\tilde{\mathcal{F}}} < -\mu \tilde{\mathcal{F}} + \delta$
 $\dot{\phi}_i = 0 \quad \forall i$
 $\dot{\psi}_{c,j} \ge -\alpha_c \psi_{c,j}, \quad \dot{\psi}_{l,j} \ge -\alpha_l \psi_{l,j} \quad \forall j$
 $\dot{\xi}_{j|i} \ge -\alpha_{\xi} \xi_{j|i} \quad \forall i, j$

Constraint definitions:

• $\phi_i := \sum_j p_{j|i} - 1$: ensures valid assignments,

• $\psi_{c,j} := \check{C}_j - \sum_i p_i p_{j|i} c_{ij}$: upper capacity constraint, • $\psi_{l,j} := \sum_i p_i p_{j|i} c_{ij} - L_j$: lower capacity constraint,

• $\xi_{j|i} := p_{j|i}(1 - p_{j|i})$: enforces interiority.

Constants $q, \mu, \alpha_c, \alpha_l, \alpha_{\varepsilon} > 0$ control convergence and constraint enforcement.

Conclusion. The system trajectories $\{p_{i|i}(t), y_i(t)\}$ remain feasible and converge to a KKT point of $P_{constr}(\beta)$ as $t \to \infty$.

Remark 1. At convergence, $\{p_{i|i}\}$ defines a soft assignment of demand to resources, and each facility location y_i lies at the weighted centroid of its assigned demands.

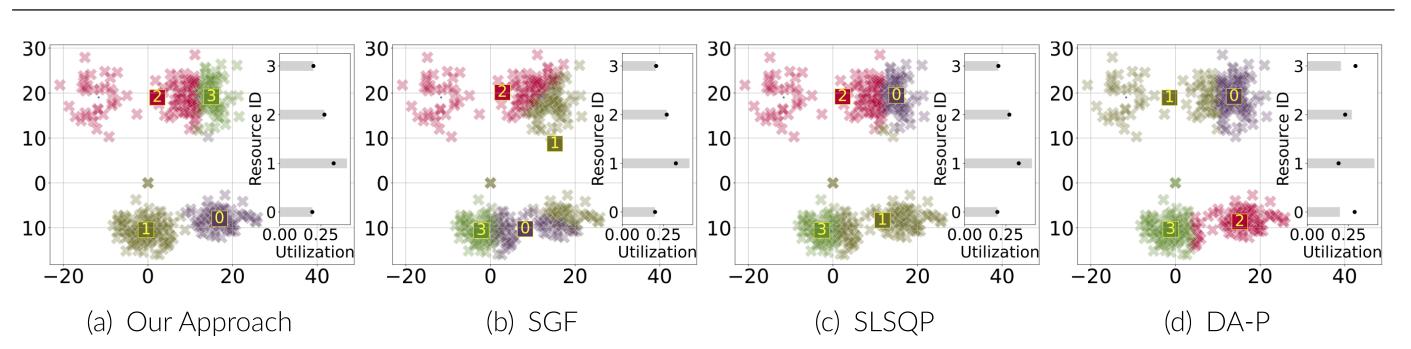
Remark 2. Our result generalizes to a broad class of nonlinear optimization problems, provided the following mild regularity conditions hold:

- Linear independence of active constraint gradients along the trajectory,
- Lipschitz continuity of the objective and constraint gradients along the trajectory,
- **Coercivity** of the objective over the feasible set.

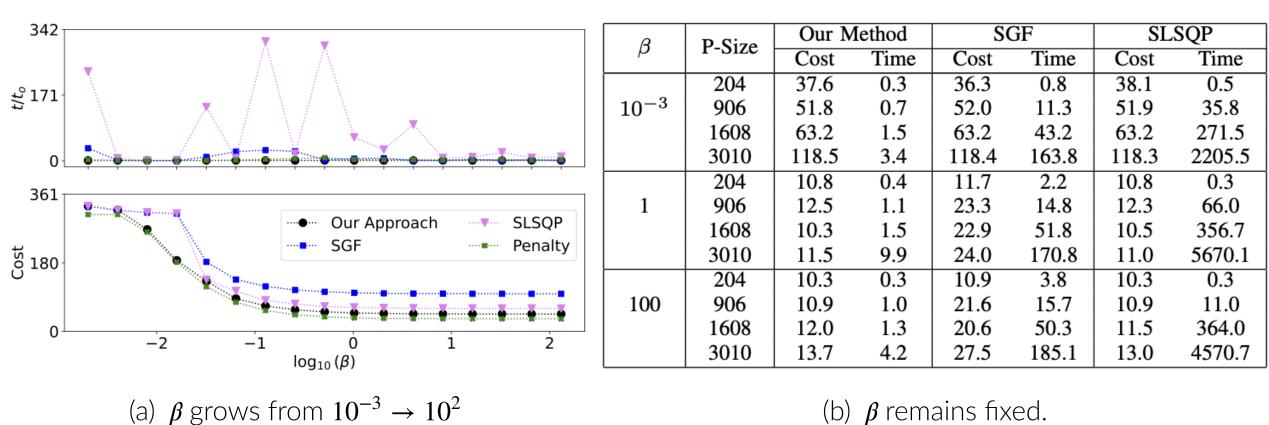
The capacitated facility location problem serves as a concrete instance of this general control-theoretic framework.

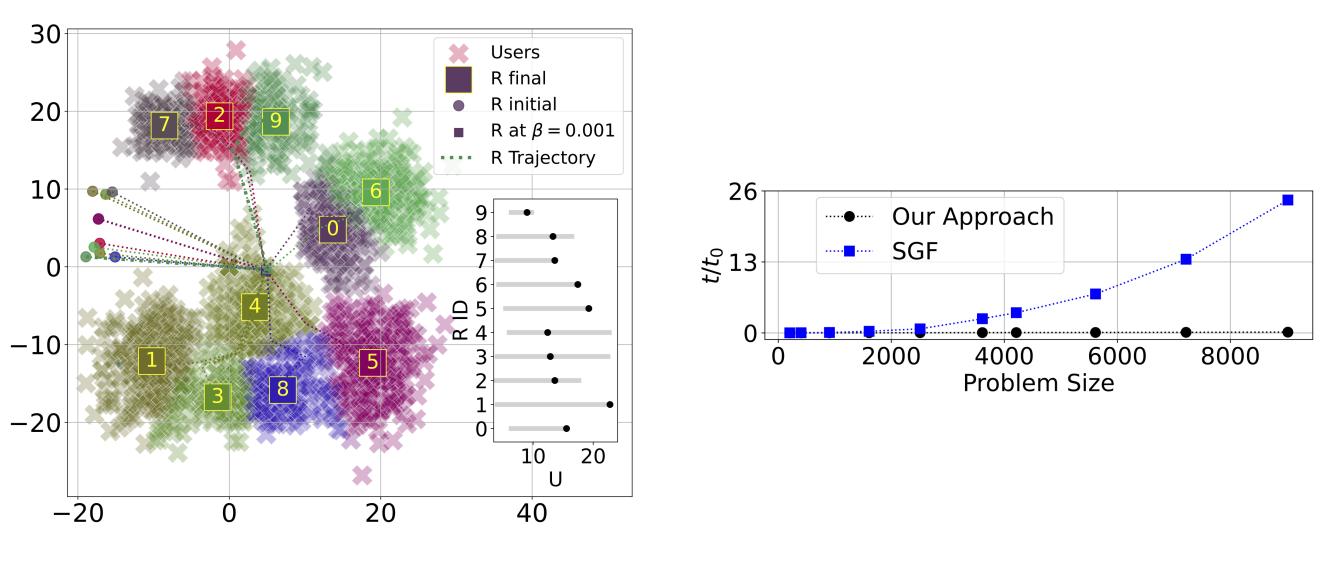
$$y_{j}^{\beta} = \frac{\sum_{i=1}^{N} p_{i} p_{j|i}^{\beta} x_{i}}{\sum_{i=1}^{N} p_{i} p_{j|i}^{\beta}}$$

 $C_i, \quad \forall j = 1, \dots, M$ (3)



{46, 210, 1600, 60}, Final costs: {46, 99, 60, 33} units.





(a) Solution using our approach

Figure 3. Capacitated FLP solution using our CBF-based approach for N = 1000, M = 10. The cluster split of users: [0.11, 0.07, 0.11, 0.09, 0.13, 0.14, 0.02, 0.11, 0.14, 0.08] and facility (R) utilization (U) constraints are shown at the bottom right. The figure also shows splitting of facilities into distinct clusters as $\beta \in [10^{-3}, 100]$ is increased during annealing. A problem of this size is not solvable by SGF approach.

[1] Kenneth Rose. Deterministic annealing for clustering, compression, classification, regression, and related optimization problems. Proceedings of the IEEE, 86(11):2210–2239, 1998.

Simulation Results

Figure 1. The figure shows a capacitated FLP with 400 demand points in 4 clusters, solved using the four methods. Final resource utilization is shown to the right of each subplot. All the approaches maintain feasibility except the DA penalty-based method. Runtimes (in sec):

Figure 2. Time and cost comparison for different methods.

(b) QP runtime comparison

References

GitHub Repository

Paper Link