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Overview

Constrained resource allocation problems in logistics, cloud computing, and UAV

scheduling can often be modeled as variants of the Facility Location Problem

(FLP), which is NP-hard even without constraints due to its combinatorial and

non-convex nature. In this abstraction:

Facility positions encode resource attributes (e.g., server capacity, charging

location),

Demand point positions reflect task requirements (e.g., compute load, energy

demand).

We extend the Deterministic Annealing (DA) framework, based on theMaximum

Entropy Principle (MEP), to incorporate capacity constraints, resulting in a non-

linear program with inequality constraints at each annealing step. To efficiently

enforce feasibility and ensure convergence, we recast this problem as a control

system:

Introduce control-affine dynamics over decision variables,

Use a control Lyapunov-like function and Control Barrier Functions (CBFs) for

stability and constraint satisfaction,

Solve a constrained quadratic program (QP) at each step.

Our method achieves up to 240× speedup over classical solvers (e.g., SLSQP) with

stronger constraint handling and scalability to dynamic settings.

Constrained Facility Location Problem

min
𝑦𝑗∈ℝ𝑑, 𝜈𝑗|𝑖∈{0,1}

𝒟 ∶=
𝑁

∑
𝑖=1

𝑝𝑖

𝑀

∑
𝑗=1

𝜈𝑗|𝑖 𝑑(𝑥𝑖, 𝑦𝑗) (1a)

s.t.

𝑀

∑
𝑗=1

𝜈𝑗|𝑖 = 1 ∀𝑖 = 1, … , 𝑁 (1b)

𝐿𝑗 ≤
𝑁

∑
𝑖=1

𝑝𝑖𝜈𝑗|𝑖𝑐𝑖𝑗 ≤ 𝐶𝑗 ∀𝑗 = 1, … , 𝑀 (1c)

Definitions: 𝜈𝑗|𝑖 ∈ {0, 1}: assignment of demand 𝑖 to facility 𝑗; 𝑦𝑗, 𝑥𝑖 ∈ ℝ𝑑: facility
and demand locations; 𝑝𝑖 > 0: demand weights with ∑𝑖 𝑝𝑖 = 1; 𝑑(𝑥𝑖, 𝑦𝑗): assign-
ment cost (e.g., squared distance); 𝑐𝑖𝑗: resource usage of demand 𝑖 at facility 𝑗;
𝐿𝑗, 𝐶𝑗: lower and upper capacity bounds.

MEP-based Formulation for FLP

• Unconstrained DA for FLP [1] – Punconstr(𝛽)
We relax binary assignments {𝑣𝑗|𝑖} to invoke MEP, following the Deterministic

Annealing (DA) approach introduced in [1] formulation introduces soft assignment

probabilities 𝑝𝛽
𝑗|𝑖 ∈ [0, 1] and minimizes the 𝛽-parameterized free energy:

min
𝑦𝛽

𝑗 ∈ℝ𝑑, 𝑝𝛽
𝑗|𝑖∈[0,1]
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𝑝𝛽
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𝑗 ) + 1
𝛽

𝑁
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𝑀
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𝑗|𝑖 log 𝑝𝛽

𝑗|𝑖 (2a)

s.t.

𝑀
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𝑝𝛽
𝑗|𝑖 = 1, ∀𝑖 = 1, … , 𝑁 (2b)

Solution (fixed-point update):

𝑝𝛽
𝑗|𝑖 = 𝑒−𝛽𝑑(𝑥𝑖,𝑦

𝛽
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𝛽
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, 𝑦𝛽
𝑗 =

∑𝑁
𝑖=1 𝑝𝑖 𝑝𝛽

𝑗|𝑖 𝑥𝑖

∑𝑁
𝑖=1 𝑝𝑖 𝑝𝛽

𝑗|𝑖

These updates are iterated at increasing values of 𝛽, starting from a low-entropy
initialization (e.g., uniform assignments), gradually converging to localized, near-

binary assignments as 𝛽 → ∞.

• Constrained DA for FLP – Pconstr(𝛽)
Same as (2), with the addition of capacity constraints:

𝐿𝑗 ≤
𝑁

∑
𝑖=1

𝑝𝑖 𝑝𝛽
𝑗|𝑖 𝑐𝑖𝑗 ≤ 𝐶𝑗, ∀𝑗 = 1, … , 𝑀 (3)

Control-Based Optimization Framework

Theorem. Consider the relaxed constrained problem Pconstr(𝛽), with cost shifted
to ensure non-negativity as ̃ℱ 𝛽 ∶= ℱ 𝛽 + log 𝑀

𝛽 . Define control-affine dynamics:

̇𝑝𝑗|𝑖 = 𝑣𝑖𝑗, ̇𝑦𝑗 = 𝑢𝑗,
initialized with a feasible 𝑝𝑗|𝑖(0) ∈ (0, 1) and at least one resource strictly within
its capacity bounds. Let (𝑣𝑖𝑗, 𝑢𝑗, 𝛿) solve the quadratic program:

min ∑
𝑖,𝑗

𝑣2
𝑖𝑗 + ∑

𝑗
‖𝑢𝑗‖2 + 𝑞𝛿2

s.t. ̇̃ℱ < −𝜇 ̃ℱ + 𝛿
̇𝜙𝑖 = 0 ∀𝑖

𝜓̇𝑐,𝑗 ≥ −𝛼𝑐𝜓𝑐,𝑗, 𝜓̇𝑙,𝑗 ≥ −𝛼𝑙𝜓𝑙,𝑗 ∀𝑗
̇𝜉𝑗|𝑖 ≥ −𝛼𝜉𝜉𝑗|𝑖 ∀𝑖, 𝑗

Constraint definitions:

𝜙𝑖 ∶= ∑𝑗 𝑝𝑗|𝑖 − 1: ensures valid assignments,
𝜓𝑐,𝑗 ∶= 𝐶𝑗 − ∑𝑖 𝑝𝑖𝑝𝑗|𝑖𝑐𝑖𝑗: upper capacity constraint,
𝜓𝑙,𝑗 ∶= ∑𝑖 𝑝𝑖𝑝𝑗|𝑖𝑐𝑖𝑗 − 𝐿𝑗: lower capacity constraint,
𝜉𝑗|𝑖 ∶= 𝑝𝑗|𝑖(1 − 𝑝𝑗|𝑖): enforces interiority.

Constants 𝑞, 𝜇, 𝛼𝑐, 𝛼𝑙, 𝛼𝜉 > 0 control convergence and constraint enforcement.

Conclusion. The system trajectories {𝑝𝑗|𝑖(𝑡), 𝑦𝑗(𝑡)} remain feasible and converge
to a KKT point of Pconstr(𝛽) as 𝑡 → ∞.

Remark 1. At convergence, {𝑝𝑗|𝑖} defines a soft assignment of demand to re-
sources, and each facility location 𝑦𝑗 lies at the weighted centroid of its assigned
demands.

Remark 2. Our result generalizes to a broad class of nonlinear optimization prob-

lems, provided the following mild regularity conditions hold:

Linear independence of active constraint gradients along the trajectory,

Lipschitz continuity of the objective and constraint gradients along the

trajectory,

Coercivity of the objective over the feasible set.

The capacitated facility location problem serves as a concrete instance of this

general control-theoretic framework.

Simulation Results

(a) Our Approach (b) SGF (c) SLSQP (d) DA-P

Figure 1. The figure shows a capacitated FLP with 400 demand points in 4 clusters, solved using

the four methods. Final resource utilization is shown to the right of each subplot. All the

approaches maintain feasibility except the DA penalty-based method. Runtimes (in sec):

{46, 210, 1600, 60}, Final costs: {46, 99, 60, 33} units.

(a) 𝛽 grows from 10−3 → 102 (b) 𝛽 remains fixed.

Figure 2. Time and cost comparison for different methods.

(a) Solution using our approach (b) QP runtime comparison

Figure 3. Capacitated FLP solution using our CBF-based approach for𝑁 = 1000, 𝑀 = 10. The
cluster split of users: [0.11, 0.07, 0.11, 0.09, 0.13, 0.14, 0.02, 0.11, 0.14, 0.08] and facility (R) utilization
(U) constraints are shown at the bottom right. The figure also shows splitting of facilities into

distinct clusters as 𝛽 ∈ [10−3, 100] is increased during annealing. A problem of this size is not
solvable by SGF approach.
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