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1 Introduction

This report reproduces and analyzes the key results from the paper “Regret Bounds for the
Adaptive Control of Linear Quadratic Systems” by Abbasi-Yadkóri and Szepesvári [2]. It fo-
cuses on presenting the main theorems, lemmas, and the algorithm designed to solve Linear
Quadratic (LQ) control problems with unknown model parameters—commonly referred to as
adaptive control—and aims to minimize regret. The paper introduces a high-probability con-
fidence set-based method for estimating the unknown parameters and proposes an algorithm
that achieves a regret bound of Õ(

√
T).

2 Problem Setup

Before formally defining the problem setup, let us briefly describe the notations and conven-
tions used in the paper.

2.1 Notations and Conventions

Notation Definition

∥ · ∥ 2-norm
∥ · ∥F Frobenius norm
∥ · ∥A Weighted 2-norm, defined by ∥x∥2

A = x⊤Ax, where x ∈ Rd

⟨·, ·⟩ Inner product
λmin(A) Minimum eigenvalue of A
λmax(A) Maximum eigenvalue of A
A ≻ 0 A is positive definite
A ⪰ 0 A is positive semidefinite
I{A} Indicator function of event A

Table 1: Notations and Conventions

2.2 Mathematical Formulation

Consider the discrete-time, infinite-horizon Linear Quadratic (LQ) control problem defined by
the system dynamics and cost function:

xt+1 = A∗xt + B∗ut + wt+1, ct = x⊤t Qxt + u⊤
t Rut,

for each time step t ∈ {0, 1, 2, . . . }. Here, ut ∈ Rd is the control input, xt ∈ Rn is the system
state, and ct ∈ R is the cost incurred at time t. The term wt+1 represents noise. The matrices
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A∗ ∈ Rn×n and B∗ ∈ Rn×d are unknown, while Q ∈ Rn×n and R ∈ Rd×d are known and
positive definite. We assume the initial state x0 = 0 for simplicity.

The objective is to design a controller that uses past observations to minimize the long-term
average expected cost:

J(u0, u1, . . . , uT) = lim sup
T→∞

1
T

T

∑
t=0

E[ct]. (1)

Let J∗ denote the optimal average cost achievable with full knowledge of the system parame-
ters. The regret R(T) up to time T for a controller is defined as:

R(T) =
T

∑
t=0

(ct − J∗).

where ct denotes the incurred costs. Regret measures the total difference between the con-
troller’s performance and that of the optimal controller with complete system dynamics infor-
mation.

3 Summary of Main Results

The paper presents two major contributions. First, it adresses the challenge of estimating the
system dynamics parameters A∗ and B∗ using observations collected up to the current time.
Under specific assumptions, it constructs high-probability confidence sets for these parame-
ters. Second, the paper introduces an algorithm for controller design that achieves a regret
bound of Õ(

√
T). These contributions are formalized through two theorems and are detailed

in Sections 3.2 and 3.3, respectively.
The proof of Theorem 1, which establishes a confidence set for the system parameters, is

not explicitly provided in the paper. Instead, the authors reference their prior work [1] for a
justification. In this report, I provide an independent sketch of the proof for this theorem.

Theorem 2 is proved within the paper using several supporting lemmas. For the sake of
brevity, I state some of these lemmas without including their detailed proofs.

Before presenting these results, let us outline the key assumptions that form the basis of the
analysis.

3.1 Assumptions

1. The noise wt is component-wise sub-Gaussian with known constant L.

2. The system is controllable. In other words, the pair (A∗, B∗) is controllable.

3. The unknown parameter Θ∗ = (A∗, B∗) lies within a bounded set, i.e.

S ⊆ {Θ ∈ Rn×(n+d) : trace(Θ⊤Θ) ≤ S2},

where S is known and

S0 =
{

Θ = (A, B) ∈ Rn×(n+d) : (A, B) is controllable, (A, M) is observable, where Q = M⊤M
}

.

(Refer to Appendix 5.1 for detailed definitions of controllability and observability.)
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3.2 Parameter Estimation

Define

Θ⊤
∗ =

(
A∗ B∗

)
, zt =

(
xt
ut

)
.

Therefore,

xt+1 =
(

A∗ B∗
) (xt

ut

)
+ wt+1 = Θ⊤

∗ zt + wt+1.

The paper aims to create high-probability confidence sets for Θ∗ using an ℓ2-regularized least-
squares approach, similar to the ridge regression lectures in class. The loss function is defined
as:

e(Θ) = λ trace(Θ⊤Θ) +
t−1

∑
t=0

∥xt+1 − Θ⊤zt∥2
2

= λ trace
(

Θ⊤Θ
)
+

t−1

∑
t=0

trace
((

xt+1 − Θ⊤zt

) (
xt+1 − Θ⊤zt

)⊤)
.

The estimator Θ̂t is obtained by minimizing the loss function:

Θ̂t = arg min
Θ

e(Θ) =
(

Z⊤Z + λI
)−1

Z⊤X, (2)

where:

• Z is the matrix with rows z0, z1, . . . , zt−1.

• X is the matrix with rows x1, x2, . . . , xT.

Now, let us state the following theorem.

Theorem 1

Let (z0, x1), . . . , (zt, xt+1), zi ∈ Rn+d, xi ∈ Rn be generated by the linear model described
earlier and the assumptions in 3.1 hold for some L > 0, Θ∗ ∈ R(n+d)×n, trace(Θ⊤

∗ Θ∗) ≤
S2. Consider the ℓ2-regularized least-squares parameter estimate Θ̂t with regularization
coefficient λ > 0 (cf. (2)). Let

Vt = λI +
t−1

∑
i=0

ziz⊤i

be the regularized design matrix underlying the covariates. Define

βt(δ) =

(
nL

√
2 log

(
det(Vt)1/2 det(λI)−1/2

δ

)
+ λ1/2S

)2

. (3)

Then, for any 0 < δ < 1, with probability at least 1 − δ,

trace((Θ̂t − Θ∗)
⊤Vt(Θ̂t − Θ∗)) ≤ βt(δ).

In particular,
P(Θ∗ ∈ Ct(δ), t = 1, 2, . . . ) ≥ 1 − δ,

where

Ct(δ) =
{

Θ ∈ Rn×(n+d) : trace
(
(Θ − Θ̂t)

⊤Vt(Θ − Θ̂t)
)
≤ βt(δ)

}
.
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Proof of Theorem 1: First, let us show that the estimator Θ̂t given in equation (2) minimizes
e(Θ). We set the derivative of the loss function with respect to Θ to zero:

∂e(Θ)

∂Θ
= 2λΘ − 2

t−1

∑
i=0

zi(xi+1 − Θ⊤zi)
⊤ = 0.

Simplifying the expression:

2λΘ − 2

(
t−1

∑
i=0

zix⊤i+1 −
t−1

∑
i=0

ziz⊤i Θ

)
= 0.

Rewriting: (
λI +

t−1

∑
i=0

ziz⊤i

)
Θ =

t−1

∑
i=0

zix⊤i+1.

Defining Z⊤ = [z0 z1 · · · zt−1] and X⊤ = [x1 x2 · · · xt], we simplify to:

(
λI + Z⊤Z

)
Θ = Z⊤X =⇒ Θ̂t =

(
λI + Z⊤Z

)−1
Z⊤X

Thus, the estimator Θ̂t is given by equation (2).
Next, we present a sketch of the proof demonstrating that, for any 0 < δ < 1, with proba-

bility at least 1 − δ:
trace

(
(Θ̂t − Θ∗)

⊤Vt(Θ̂t − Θ∗)
)
≤ βt(δ),

where

βt(δ) =

(
nL

√
2 ln

(
det(Vt)1/2 det(λI)−1/2

δ

)
+ λ1/2S

)2

,

and Vt = λI + ∑t−1
i=0 ziz⊤i .

Claim 1: The expression we aim to bound,

trace
(
(Θ̂t − Θ∗)

⊤Vt(Θ̂t − Θ∗)
)

,

can be decomposed into three distinct terms, denoted as A, B, and C, defined below:

Term A := λ2 trace
(

Θ⊤
∗ V−1

t Θ∗
)

,

Term B := −2λ trace

(
Θ⊤

∗ V−1
t

t−1

∑
j=0

zjw⊤
j+1

)
,

Term C := trace

((
t−1

∑
i=0

wi+1z⊤i

)
V−1

t

(
t−1

∑
j=0

zjw⊤
j+1

))
.

Proof of Claim 1: Please refer to 5.2 in Appendix.
Now we bound each term individually.

• Term A: Note that term A is deterministic. Since Vt ⪰ λI, it follows that V−1
t ⪯ λ−1 I.

Therefore:

Term A ≤ λ2 trace
(

Θ⊤
∗ (λ

−1 I)Θ∗
)
= λ trace

(
Θ⊤

∗ Θ∗
)
≤ λS2.
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• Term B: To bound Term B, we first present the following claim.

Claim 2: Term B can be expressed as

Term B = −2λ
t−1

∑
j=0

w⊤
j+1Θ⊤

∗ V−1
t zj,

which forms a martingale difference sequence. Consequently, the Azuma-Hoeffding in-
equality can be applied to establish a high-probability bound for this term.

Proof of Claim 2: Please refer to 5.3 in Appendix.

• Term C: We now present the following claim.

Claim 3: With probability at least 1 − δ,

Term C ≤ 2nL2 log
(

n det(Vt)1/2 det(λI)−1/2

δ

)
.

Proof of Claim 3: Please refer to 5.4 in Appendix.

Finally, by putting together all the bounds derived for each individual term, it can be shown
that with probability at least 1 − δ,

Term A + Term B + Term C ≤
(

nL

√
2 log

(
det(Vt)1/2 det(λI)−1/2

δ

)
+ λ1/2S

)2

. ■

3.3 Controller Design

Consider the system parameters (A, B) = Θ ∈ S0 as defined in 3.1. For each Θ, there exists a
unique positive semidefinite solution P(Θ) to the discrete-time algebraic Riccati equation:

P(Θ) = Q + A⊤P(Θ)A − A⊤P(Θ)B(B⊤P(Θ)B + R)−1B⊤P(Θ)A.

Then, the optimal control law for the linear-quadratic system [3] is given by

ut = K(Θ)xt, (4)

where K(Θ) is called the gain matrix and is defined by

K(Θ) = −(B⊤P(Θ)B + R)−1B⊤P(Θ)A.

The matrix P(Θ) is uniformly bounded on S , i.e. there exists D > 0 such that ∥P(Θ)∥ ≤ D
for all Θ ∈ S . Moreover, under the above control, the closed-loop matrix A + BK(Θ) is stable
(i.e., ∥A + BK(Θ)∥2 < 1) and the average cost of control law (4) with Θ = Θ∗ is the optimal
average cost J∗ = J(Θ∗) = trace(P(Θ∗)).

The paper’s main contribution lies in proposing the following algorithm for control design
within this problem setting, along with its regret analysis, as summarized in Theorem 2.
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Algorithm 1 The proposed adaptive algorithm for the LQ problem
1: Inputs: T, S > 0, δ > 0, Q, L, λ > 0.
2: Set V0 = λI and Θ̂0 = 0.
3: (Â0, B̂0) = Θ̂0 = arg minΘ∈C0(δ)∩S J(Θ).
4: for t = 0, 1, 2, . . . do
5: if det(Vt) > 2 det(V0) then
6: Calculate Θ̂t by Equation (2).
7: Find Θ̂t such that J(Θ̂t) ≤ infΘ∈Ct(δ)∩S J(Θ) + 1√

t
.

8: Let V0 = Vt.
9: else

10: Θ̂t = Θ̂t−1.
11: end if
12: Calculate ut based on the current parameters, ut = K(Θ̂t)xt.
13: Execute control, observe new state xt+1.
14: Save (zt, xt+1) into the dataset, where z⊤t = (x⊤t , u⊤

t ).
15: Vt+1 := Vt + ztz⊤t .
16: end for

Theorem 2

Under the following assumptions:

1. ρ := sup(A,B)∈S ∥A + BK(A, B)∥ < 1,

2. There exists a constant C > 0 such that C = supΘ∈S ∥K(Θ)∥ < ∞,

for any 0 < δ < 1 and any time horizon T, the regret of Algorithm 1 is bounded with
probability at least 1 − δ by:

R(T) = Õ
(√

T log(1/δ)

)
,

where the constant in the bound depends on the problem, and Õ hides logarithmic
factors.

Proof of Theorem 2: From [3], assuming for simplicity that the covariance matrix of the process
noise, given by E[wt+1w⊤

t+1 | xt, ut], is the identity matrix In, the Bellman optimality equation
for the LQ problem is as follows:

trace (P(Θ)) + x⊤t P(Θ)xt = min
u

{
x⊤t Qxt + u⊤Ru + E

[
xu⊤

t+1P(Θt)xu
t+1 | xt, u

]}
.

Thus, given the system dynamics parameters at time t, denoted by Θ̃⊤
t = (Ã, B̃), the right-

hand side of the Bellman optimality equation is expressed as:

min
u

{
x⊤t Qxt + u⊤Ru + E

[
x̃u ⊤

t+1 P(Θ̃t)x̃u
t+1 | xt, u

]}
= x⊤t Qxt + u⊤

t Rut + E
[

x̃u ⊤
t+1 P(Θ̃t)x̃u

t+1 | xt, ut

]
,

= x⊤t Qxt + u⊤
t Rut + E

[
(Ãtxt + B̃tut + wt+1)

⊤P(Θ̃t)(Ãtxt + B̃tut + wt+1) | xt, ut

]
,

= x⊤t Qxt + u⊤
t Rut + E

[
(Ãtxt + B̃tut)

⊤P(Θ̃t)(Ãtxt + B̃tut) | xt, ut

]
+ E

[
w⊤

t+1P(Θ̃t)wt+1 | xt, ut

]
,

= x⊤t Qxt + u⊤
t Rut + (Ãtxt + B̃tut)

⊤P(Θ̃t)(Ãtxt + B̃tut) + E
[
w⊤

t+1P(Θ̃t)wt+1 | xt, ut

]
,
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in the above equation, replacing the noise term wt+1 with

wt+1 = xt+1 − A∗xt − B∗ut

simplifies E
[
w⊤

t+1P(Θ̃t)wt+1 | xt, ut
]

to

E
[

x⊤t+1P(Θ̃t)xt+1 | xt, ut

]
− E

[
(A∗xt + B∗ut)

⊤P(Θ̃t)(A∗xt + B∗ut) | xt, ut

]
,

= E
[

x⊤t+1P(Θ̃t)xt+1 | xt, ut

]
− (A∗xt + B∗ut)

⊤P(Θ̃t)(A∗xt + B∗ut)

Therefore, the RHS is expressed as:

x⊤t Qxt + u⊤
t Rut + (Ãtxt + B̃tut)

⊤P(Θ̃t)(Ãtxt + B̃tut)

+ E
[

x⊤t+1P(Θ̃t)xt+1 | xt, ut

]
− (A∗xt + B∗ut)

⊤P(Θ̃t)(A∗xt + B∗ut)

Moreover, the LHS of the Bellman optimality equation is written as:

trace
(

P(Θ̃t)
)
+ x⊤t P(Θ̃t)xt = J(Θ̃t) + x⊤t P(Θ̃t)xt.

Therefore, equating both sides gives:

J(Θ̃t) + x⊤t P(Θ̃t)xt = x⊤t Qxt + u⊤
t Rut + (Ãtxt + B̃tut)

⊤P(Θ̃t)(Ãtxt + B̃tut)

+ E
[

x⊤t+1P(Θ̃t)xt+1 | xt, ut

]
− (A∗xt + B∗ut)

⊤P(Θ̃t)(A∗xt + B∗ut)

Hence,

x⊤t Qxt + u⊤
t Rut = J(Θ̃t) + x⊤t P(Θ̃t)xt − (Ãtxt + B̃tut)

⊤P(Θ̃t)(Ãtxt + B̃tut)

− E
[

x⊤t+1P(Θ̃t)xt+1 | xt, ut

]
+ (A∗xt + B∗ut)

⊤P(Θ̃t)(A∗xt + B∗ut),

= J(Θ̃t) + x⊤t P(Θ̃t)xt − E
[

x⊤t+1P(Θ̃t)xt+1 | xt, ut

]
+ (Ãtxt + B̃tut)

⊤P(Θ̃t)(Ãtxt + B̃tut)− (A∗xt + B∗ut)
⊤P(Θ̃t)(A∗xt + B∗ut)

− E
[

x⊤t+1P(Θ̃t+1)xt+1 | xt, ut

]
+ E

[
x⊤t+1P(Θ̃t+1)xt+1 | xt, ut

]
,

where we added and subtracted E
[
x⊤t+1P(Θ̃t+1)xt+1 | xt, ut

]
in the last line.

Thus, the total cost incurred by Algorithm 1 up to time T is computed as:

T

∑
t=1

(x⊤t Qxt + u⊤
t Rut) =

T

∑
t=1

J(Θ̃t) + R1 − R2 − R3, (5)

where

R1 =
T

∑
t=0

(
x⊤t P(Θ̃t)xt − E

[
x⊤t+1P(Θ̃t)xt+1 | xt, ut

])
,

R2 =
T

∑
t=0

E
[

x⊤t+1
(

P(Θ̃t)− P(Θ̃t+1)
)

xt+1 | xt, ut

]
,

and

R3 =
T

∑
t=0

(
(Ãtxt + B̃tut)

⊤P(Θ̃t)(Ãtxt + B̃tut)− (A∗xt + B∗ut)
⊤P(Θ̃t)(A∗xt + B∗ut)

)
.

Now, let us choose an error probability δ > 0 and define the following ”good events”:

Et =

{
ω ∈ Ω : ∀s ≤ t, Θ∗ ∈ Cs

(
δ

4

)}
, and E = ET,
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Ft = {ω ∈ Ω : ∀s ≤ t, ∥xs∥ ≤ αt} , and F = FT.

where

αt =
1

1 − ρ

(
η

ρ

)n+d
(

GZ
n+d

n+d+1
T βt(δ/4)

1
2(n+d+1) + 2L

√
n log

(
4nt(t + 1)

δ

))
,

η = 1 ∨ sup
Θ∈S

∥A∗ + B∗K(Θ)∥,

ZT = max
0≤t≤T

∥zt∥,

G = 2
(

2S(n + d)n+d+1/2

U1/2

) 1
n+d+1

,

U =
U0

H
, U0 =

1
16n+d−2(1 ∨ S2(n+d−2))

.

and H is any number satisfying1

H >

(
16 ∨ 4S2M2

(n + d)U0

)
,

where

M = sup
Y≥0

(
nL
√
(n + d) log

(
1+TY/λ

δ

)
+ λ1/2S

)
Y

.

In the above definitions, Et ensures that the true parameters Θ∗ remain within the confidence
sets Cs

(
δ
4

)
for all s ≤ t, while Ft ensures that the state vectors xs remain bounded by αt over

the same time horizon.
In Algorithm 1, at each time step t, Θ̃t is selected to satisfy (line 7):

J(Θ̃t) ≤ inf
Θ∈Ct(δ)∩S

J(Θ) +
1√

t
.

On E ∩ F, since Θ∗ ∈ Ct(δ), it follows that:

inf
Θ∈Ct(δ)∩S

J(Θ) ≤ J(Θ∗).

Summing over all time steps t = 1 to T, we obtain:

T

∑
t=1

J(Θ̃t) ≤ TJ(Θ∗) +
T

∑
t=1

1√
t
.

Claim 4:
T

∑
t=1

1√
t
≤ 2

√
T.

Proof of Claim 4: See 5.5 in the Appendix for details.
Therefore, combining these results:

T

∑
t=1

J(Θ̃t) ≤ TJ(Θ∗) + 2
√

T.

1We use ∧ and ∨ to denote the minimum and the maximum, respectively.
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Substituting this into (5) yields:

R(T) :=
T

∑
t=1

(x⊤t Qxt + u⊤
t Rut)− TJ(Θ∗) ≤ 2

√
T + R1 − R2 − R3, (6)

where R(T) denotes the regret.
In the remainder of the paper, the authors focus on deriving high-probability bounds for

R1, R2 and R3. For the sake of brevity, I present these bounds as lemmas without providing
detailed proofs and then add them together to demonstrate that the regret of the proposed
algorithm is Õ(

√
T).

• Bound R1 on E ∩ F:

Lemma 1 (stated without proof)

Lemma 7 of the paper: With probability at least 1 − δ/2,

I{E∩F}R1 ≤ 2DW2

√
2T log

8
δ
+ n

√
B′

δ,

where W = Ln
√

2n log 8nT
δ and

B′
δ =

(
ν + TD2S2X2(1 + C2)

)
log
(

4nν−1/2

δ

(
ν + TD2S2X2(1 + C2)

)1/2
)

.

• Bound |R2| on E ∩ F:

Lemma 2

Lemma 9 of the paper:

I{E∩F}|R2| ≤ 2DX2
T(n + d) log2

(
1 + TX2

T(1 + C2)/λ
)

.

where XT is defined in the following lemma.

Lemma 3 (stated without proof)

Lemma 5 of the paper: For appropriate problem-dependent constants C1 >
0, C2 > 0 (which are independent of t, δ, T), for any t ≥ 0, it holds that
I{Ft} max1≤s≤t ∥xs∥ ≤ Xt, where

Xt = Yn+d+1
t

and

Yt := (e∨λ(n+ d)(e− 1)∨ 4(C1 log(1/δ)+C2 log(t/δ)) log2(4(C1 log(1/δ)+C2 log(t/δ))).

Proof of Lemma 2: Recall the definition:

R2 =
T

∑
t=0

E
[

x⊤t+1
(

P(Θ̃t)− P(Θ̃t+1)
)

xt+1 | xt, ut

]
.

The summation is non-zero only at time steps where Θ̃t (and consequently the policy)
changes. Let K denote the number of policy changes up to time T. Each non-zero term is
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bounded by:∣∣∣x⊤t+1
(

P(Θ̃t)− P(Θ̃t+1)
)

xt+1

∣∣∣ ≤ ∥xt+1∥2 ·
∥∥P(Θ̃t)− P(Θ̃t+1)

∥∥
≤ X2

T (∥P(Θ̃t)∥+ ∥P(Θ̃t+1)∥) ≤ 2DX2
T.

Thus, on E ∩ F:
|R2| ≤ K · 2DX2

T.

To bound K, note that the algorithm updates the policy when VT = λI +∑T−1
t=0 ztz⊤t grows

significantly. More precisely, as denoted in line 5 of Algorithm 1, the policy is updated
when det(Vt) > 2det(V0). Thus, if K policy changes have occurred, then:

det(VT) ≥ det(λI) · 2K = λn+d2K.

On the other hand, on E ∩ F,

∥zt∥2 = ∥xt∥2 + ∥ut∥2 = ∥xt∥2 + ∥K(Θ̃t)xt∥2 ≤ ∥xt∥2(1 + C2) ≤ X2
T(1 + C2)

Hence:
λmax(VT) ≤ λ + TX2

T(1 + C2).

Thus:

det(VT) =
n+d

∏
i=1

λi(VT) ≤ (λmax(Vt))
n+d ≤ (λ + TX2

T(1 + C2))n+d.

Combining these inequalities:

λn+d2K ≤ (λ + TX2
T(1 + C2))n+d.

Taking the (n + d)-th root:

λ2K/(n+d) ≤ λ + TX2
T(1 + C2).

Rearranging:

2K/(n+d) ≤ 1 +
TX2

T(1 + C2)

λ
.

Taking log2:
K

n + d
≤ log2

(
1 +

TX2
T(1 + C2)

λ

)
.

Finally:

K ≤ (n + d) log2

(
1 +

TX2
T(1 + C2)

λ

)
.

Substituting K into the earlier inequality:

|R2| ≤ K · 2DX2
T ≤ 2DX2

T(n + d) log2

(
1 +

TX2
T(1 + C2)

λ

)
. ■

which concludes the proof of Lemma 2.

• Bound |R3| on E ∩ F:

Lemma 4 (stated without proof)

Lemma 13 of the paper: Let R3 be as defined by Equation (12). Then we have

I{E∩F}|R3| ≤
8√
λ
(1 + C2)X2

TSD
(

βT(δ/4) log
det(VT)

det(λI)

)1/2 √
T.

10



Thus, from (6) and Lemmas 1, 2, and 4, with probability at least 1 − δ/2, on the event E ∩ F,

R(T) ≤ 2DW2

√
2T log

(
8
δ

)
+ n

√
B′

δ + 2DX2
T(n + d) log2

(
1 +

TX2
T(1 + C2)

λ

)

+
8√
λ
(1 + C2)X2

TSD
(

βT

(
δ

4

)
log

det(VT)

det(λI)

)1/2 √
T.

To establish that the regret R(T) satisfies R(T) = Õ(
√

T), we analyze each term in the final
bound, focusing on their scaling to T while ignoring logarithmic factors.

1. First Term:

2DX2
T(n + d) log2

(
1 +

TX2
T(1 + C2)

λ

)
= Õ(1)

Reasoning: Given XT = Yn+d+1
T and YT = O(logk T) for some constant k, it follows that:

X2
T = O

(
log2k(n+d+1) T

)
The logarithmic term inside the log scales as:

log2

(
1 +

TX2
T(1 + C2)

λ

)
= O(log T)

Therefore, the first term is poly-logarithmic in T, which is absorbed into Õ(1).

2. Second Term:

2DW2

√
2T log

(
8
δ

)
= Õ(

√
T)

Reasoning: This term directly scales with
√

T, contributing linearly to the
√

T compo-
nent of the regret bound.

3. Third Term:
n
√

B′
δ = Õ(

√
T)

Reasoning: Since XT = O(logk(n+d+1) T), we have:

B′
δ = O

(
T log2k(n+d+1)+1 T

)
Taking the square root: √

B′
δ = O

(√
T logk(n+d+1)+0.5 T

)
Therefore, the third term scales as:

Õ(
√

T)

4. Fourth Term:

8√
λ
(1 + C2)X2

TSD
(

βT

(
δ

4

)
log

det(VT)

det(λI)

)1/2 √
T = Õ(

√
T)

Reasoning: Given βT(δ) = O(log T) and log det(VT) = O(log T), we have:(
βT

(
δ

4

)
log

det(VT)

det(λI)

)1/2

= O(log T)

Therefore, the fourth term scales as:
Õ(

√
T)

11



Combining all contributions, the dominant scaling is Õ(
√

T). Therefore, the cumulative
regret R(T) on the event E ∩ F satisfies:

R(T) = Õ(
√

T).

Thus, for any 0 < δ < 1 and any time horizon T, on the event E ∩ F, we have shown that
with probability at least 1 − δ

2 , the regret of Algorithm 1 is bounded by Õ(
√

T).
Now, consider the following lemma:

Lemma 5 (stated without proof)

Lemma 4 of the paper: It holds that P(E ∩ F) ≥ 1 − δ
2 .

Since the probability that both events E and F occur simultaneously is at least 1 − δ
2 , and

conditioned on E ∩ F the regret is at most Õ(
√

T) with probability at least 1 − δ
2 , we now

combine these statements as below

P
(

Regret ≤ Õ(
√

T)
)
≥ P

(
Regret ≤ Õ(

√
T)
∣∣E ∩ F

)
· P(E ∩ F) ≥ (1 − δ/2)2 ≥ 1 − δ

Thus, with probability at least 1 − δ, the regret of Algorithm 1 is at most Õ(
√

T). This com-
pletes the proof of the main theorem presented in the paper.

4 Conclusion

In this report, I reproduced and analyzed the main results from Abbasi-Yadkóri and Szepesvári’s
study on regret bounds for adaptive control in Linear Quadratic (LQ) systems.

Firstly, they established a high-probability confidence bound for the system parameters,
ensuring that the true parameters lie within the constructed confidence sets with probability
at least 1 − δ.

Secondly, they proposed an algorithm that achieves a regret bound of Õ(
√

T), demonstrat-
ing its effectiveness in minimizing cumulative regret over time.

5 Appendix

5.1 Definition of Controllability and Observability

Controllability: A system is controllable if the state xt can be driven from any initial state to
any final state within a finite time using an appropriate control input ut. This is determined by
the controllability matrix:

C =
[
B∗ A∗B∗ A2

∗B∗ · · · An−1
∗ B∗

]
.

The system is controllable if C has full rank n, where n is the dimension of xt.

Observability: A system is observable if the initial state x0 can be uniquely determined from
output measurements over a finite time. For a pair (A, M), the observability matrix is:

O =


M

MA
MA2

...
MAn−1

 .

The system is observable if O has full column rank n.

12



5.2 proof of claim 1

From the derivation of the ℓ2-regularized least-squares estimator, we have:

Θ̂t = V−1
t

(
t−1

∑
i=0

zix⊤i+1

)
.

Since xi+1 = Θ⊤
∗ zi + wi+1, we have:

Θ̂t = V−1
t

(
t−1

∑
i=0

zi(Θ⊤
∗ zi + wi+1)

⊤
)

= V−1
t

(
t−1

∑
i=0

ziz⊤i Θ∗ +
t−1

∑
i=0

ziw⊤
i+1

)

= V−1
t

(
(Vt − λI)Θ∗ +

t−1

∑
i=0

ziw⊤
i+1

)

= Θ∗ − V−1
t λΘ∗ + V−1

t

t−1

∑
i=0

ziw⊤
i+1.

Therefore, the estimation error is:

Θ̂t − Θ∗ = −V−1
t λΘ∗ + V−1

t

t−1

∑
i=0

ziw⊤
i+1.

We are interested in bounding:

trace
(
(Θ̂t − Θ∗)

⊤Vt(Θ̂t − Θ∗)
)

.

Substituting the expression for Θ̂t − Θ∗, we have:

trace
(
(Θ̂t − Θ∗)

⊤Vt(Θ̂t − Θ∗)
)

= trace

(−V−1
t λΘ∗ + V−1

t

t−1

∑
i=0

ziw⊤
i+1

)⊤

Vt

(
−V−1

t λΘ∗ + V−1
t

t−1

∑
j=0

zjw⊤
j+1

)
= trace

((
−λΘ⊤

∗ V−1
t +

t−1

∑
i=0

wi+1z⊤i V−1
t

)
Vt

(
−V−1

t λΘ∗ + V−1
t

t−1

∑
j=0

zjw⊤
j+1

))

= trace

((
−λΘ⊤

∗ V−1
t Vt +

t−1

∑
i=0

wi+1z⊤i V−1
t Vt

)(
−V−1

t λΘ∗ + V−1
t

t−1

∑
j=0

zjw⊤
j+1

))

= trace

((
−λΘ⊤

∗ +
t−1

∑
i=0

wi+1z⊤i

)(
−V−1

t λΘ∗ + V−1
t

t−1

∑
j=0

zjw⊤
j+1

))
.

We now expand the product inside the trace:

trace

(
λΘ⊤

∗ V−1
t λΘ∗ − λΘ⊤

∗ V−1
t

t−1

∑
j=0

zjw⊤
j+1 −

t−1

∑
i=0

wi+1z⊤i V−1
t λΘ∗ +

t−1

∑
i=0

wi+1z⊤i V−1
t

t−1

∑
j=0

zjw⊤
j+1

)

= λ2trace
(

Θ⊤
∗ V−1

t Θ∗
)

︸ ︷︷ ︸
A

−2λ trace

(
Θ⊤

∗ V−1
t

t−1

∑
j=0

zjw⊤
j+1

)
︸ ︷︷ ︸

B

+ trace

((
t−1

∑
i=0

wi+1z⊤i

)
V−1

t

(
t−1

∑
j=0

zjw⊤
j+1

))
︸ ︷︷ ︸

C

,

completing the proof.
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5.3 Proof of Claim 2

Term B = −2λ trace

Θ⊤
∗ V−1

t︸ ︷︷ ︸
K

t−1

∑
j=0

zjw⊤
j+1

 = −2λ
t−1

∑
j=0

w⊤
j+1Kzj

= −2λ
t−1

∑
j=0

w⊤
j+1Θ⊤

∗ V−1
t zj :=

t−1

∑
j=0

aj,

where we define the sequence {aj}t−1
j=0 as:

aj := −2λ w⊤
j+1Θ⊤

∗ V−1
t zj.

Each aj satisfies
E[aj | z1, z2, . . . , zj] = 0.

Therefore, {aj}t−1
j=0 forms a martingale difference sequence, allowing us to apply the Azuma-

Hoeffding inequality to bound Term B with high probability.

5.4 Proof of Claim 3

To bound Term C, we rely on Corollary 1 from Section 2 of [1], presented below without its
proof for brevity.

Lemma – Corollary 1 of [1] (Modified)

Let St = ∑t
k=1 ηkmk−1, where:

• ηk is a martingale difference sequence, i.e., E[ηk | Fk−1] = 0, where Fk−1 is the
filtration representing the information available up to time k − 1.

• mk ∈ Rd is a vector-valued process adapted to the filtration Fk.

Let Vt = V + ∑t
k=1 mk−1m⊤

k−1, where:

• V is a fixed positive definite matrix in Rd×d.

Assume:

• ηk is sub-Gaussian and L2 > 0, such that ∀γ ∈ R,

E[eγηk | Fk−1] ≤ e
γ2 L2

2 .

Then, for any t ≥ 0, with probability 1 − δ,

∥St∥2
V−1

t
≤ 2L2 log

(
det(Vt)1/2 det(V)−1/2

δ

)
.

Recall that:

Term C := trace

((
t−1

∑
i=0

wi+1z⊤i

)
V−1

t

(
t−1

∑
j=0

zjw⊤
j+1

))
.

Define, for each j = 1, . . . , n:

mj =
t−1

∑
i=0

wi+1,jzi,
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where wi+1,j denotes the j-th component of the noise vector wi+1. Thus, Term C can be ex-
pressed as:

Term C =
n

∑
j=1

m⊤
j V−1

t mj =
n

∑
j=1

∥mj∥2
V−1

t
.

We apply the provided lemma to each mj. For each j, define:

• η
(j)
k = wk,j, the j-th component of the noise vector wk.

• mk−1 = zk−1.

• V = λI.

With these definitions, for each j, mj = ∑t−1
i=0 wi+1,jzi corresponds to St = ∑t

k=1 η
(j)
k mk−1 in the

lemma. Therefore, by the lemma, with probability at least 1 − δ
n , we have:

∥mj∥2
V−1

t
≤ 2L2 log

(
det(Vt)1/2 det(λI)−1/2

δ
n

)
.

To ensure that this bound holds for all j = 1, . . . , n simultaneously, we apply the union bound.
Therefore, with probability at least 1 − δ, the above inequality holds for all j, and thus:

Term C =
n

∑
j=1

∥mj∥2
V−1

t
≤ 2nL2 log

(
n det(Vt)1/2 det(λI)−1/2

δ

)
,

which completes the proof.

5.5 Proof of Claim 4

We prove by induction that:
T

∑
t=1

1√
t
≤ 2

√
T.

Base Case: For T = 1,
1

∑
t=1

1√
t
=

1√
1
= 1, and 2

√
1 = 2.

Inductive Step: Assume for some k ≥ 1,

k

∑
t=1

1√
t
≤ 2

√
k.

We need to prove:
k+1

∑
t=1

1√
t
≤ 2

√
k + 1.

Expanding the sum:
k+1

∑
t=1

1√
t
=

k

∑
t=1

1√
t
+

1√
k + 1

.

By the inductive hypothesis:
k

∑
t=1

1√
t
≤ 2

√
k.
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Thus:
k+1

∑
t=1

1√
t
≤ 2

√
k +

1√
k + 1

.

It suffices to show:
2
√

k +
1√

k + 1
≤ 2

√
k + 1.

Using
√

k + 1 −
√

k = 1√
k+1+

√
k
, we get:

1√
k + 1

≤ 2√
k + 1 +

√
k
≤ 2(

√
k + 1 −

√
k),

which is true for all k ≥ 1. Thus, By induction, the inequality holds for all T ≥ 1:

T

∑
t=1

1√
t
≤ 2

√
T. ■
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